На открытой странице мы попытаемся помочь выбрать для коттеджа необходимые компоненты отопления. Схема обогревания имеет котел, увеличивающие давление насосы, крепежи, развоздушки, трубы, бак для расширения, систему соединения, коллекторы терморегуляторы, батареи. Любой элемент неоспоримо важен. Поэтому подбор каждой части конструкции важно осуществлять обдуманно. Сборка обогревания квартиры включает важные комплектующие.

Автор Тема: что такое статическое давление? (Прочитано 5711 раз)

« Ответ #1 : 22 Декабря 2011, 06:49:50 »

Рабочее давление в отопительной системе – это давление, которое присутствует в отопительной системе во время штатной работы. Это давление состоит из двух составляющих – статическое давление в системе и циркуляционное. Статическое давление образуется за счет столба воды, а также за счет давления в расширительном бачке. В открытых отопительных системах статическое давление обусловлено только давлением столба теплоносителя. Циркуляционное давление – давление, обусловленное работой насосов и движением теплоносителя в трубах.(с).

В 307 речь не о разнице внутридомового и статического, а немного о другом: п.16 приложения 1:

Источник: http://www.rosteplo.ru/forum/3/5046/

При проведении аэродинамического расчета вытяжных систем наиболее трудоемким является процесс определения коэффициентов местного сопротивления тройников. Зависимости, определяющие зна­чения этих коэффициентов, сложны, а при использовании табличных данных легко допустить неточность при интерполировании. Даже при проведении расчета на ЭВМ определение коэффициентов местного со­противления затягивает процесс счета систем с большим числом трой­ников.

Существует способ расчета вытяжных систем, позволяющий обой­тись без определения коэффициентов местного сопротивления тройни­ков. Автор этого способа проф. П. Н. Каменев предложил рассчитывать потери в тройнике не по полной энергии, а по изменению уровня ПОТеН-' циальной энергии потока, что значительно упростило весь расчет.

Расчет вытяжных систем вентиляции с горизонтальными каналами и механическим побуждением движения воздуха. Рассмотрим схему давлений в тройчике (первом по ходу воздуха) вытяжной системы (рис. ХЇ.7). Номерами 1, 2 и 3 обозначены два ответвления и сборный участок, индексами «1», «2» и «3» будем обозначать физические характе­ристики на соответствующем участке. Предположим, что известны диа­метры di, d2 и d3, длины /1 и 12, расходы Lu L2 и L3—Li+L2, углы меж­ду осями участков 1 и 3— ai и 2 и 3— а2.

При работе вентилятора в сечении /—/ создается разрежение, зна­чение которого от условного нуля определяется ординатой bd, от абсо­лютного нуля — ординатой ab (обозначим эту ординату pvaci)- Разреже­ние в воздуховоде вызывает движение воздуха в ответвлениях 1 и 2. Если di<Zd2 и 1

>12, как показано на рисунке, то расходы и скорости ' движения воздуха по ответвлениям будут различны.

Потери энергии (удельной) на участке 1 от входа до сечения /—/ равны:

Арг = 1г - f zi,

А на участке 2

Ар2 = R2 г2 + г2.

Значение Др2 меньше Дрь Потери на участках 1 и 2 показаны на рисунке ординатами dc и dc2. Начальный уровень потенциальной энер­гии воздуха соответствовал атмосферному давлению ратм и был одина­ков для потоков 1 и 2. Следовательно, удельная полная энергия пото­ков, определяемая полным давлением, отсчитанным от абсолютного нуля, различна (ординаты ас и ас2). Удельная кинетическая энергия потоков (динамическое давление) на участках также различна:

_ ppj Рд2= 2 .

Эти величины представлены на рисунке ординатами Ьс и Ьс2.

Величину вакуума в сечении /—/ можно определить следующим образом:

Pvас I = Ратм — i(Ri h + Zj) + рД1] = ратм — [(R2 l2 + Z2) + рд2], (XI.44)

Где ратм — давление атмосферного воздуха на уровне входа в ответвления.

В квадратные скобки в формуле (XI. 44) заключены значения ста­тических давлений в сечении /—I по шкале от условного нуля рСтi, i==

= /?стІ,2-

На некотором расстоянии от начала смешения в сечении II—II по­токи полностью смешиваются, л уровень удельной полной энергии по­тока будет соответствовать ординате eg. Условные линии Cg и c2g по­казывают уменьшенріе энергии одного потока и увеличение энергии другого Потерями давления на трение между сечениями I—I и II—II при построении схем давлений пренебрегаем

Кинетическая энергия потоков также выравнивается и принимает значение

Рдз = —. (XI. 45)

Определяемое ординатой gf.

Разрежение в сечении II—II pvacii определится ординатой ef. Составим уравнение энергии для объема воздуха, заключенного между сечениями /—I и II—II и стенками воздуховода:

E1+E2 = ES + AE, (XI.46)

Где Е и Е2 — полная энергия потоков 1 и 2 в сечении I—/; Е$ — полная энер­гия потока 3 в сечении II—//; АЕ — потери энергии на смешение потоков (без учета трения)

В развернутом виде уравнение (XI.46) запишется так:

(рді + Pv ас I) Lt+ (рД2 + PV ас і) L2 = (рдз + Pv ас II) L3 + А£, (XI.47)

Отсюда

А £ = Р ді І! + Рд2 L2 — Рдз L3 4- А рст L3. (X1.48)

Здесь Арст — ^-асі — Pvacii — изменение статического давления меж­ду сечениями /—/ и II—II.

Значение Арст можно определить из уравнения изменения количест­ва движения на рассматриваемом участке:

'll^'l+f.^W (XI. 49)

Где /і и /ц — проекции на ось сборного участка 3 количества движения в соот­ветствующих сечениях, /з — площадь поперечного сечения участка 3.

Подставив соответствующие значения, получим:

L3 pv3 = Lj pvt cos 4- L2 pv2 cos-a2 4

/з ДРст (XI. 50)

Или

Л L3 РЦ> (Li Vi cos оц+^з v2 cos g2)p

Источник: http://msd.com.ua/otoplenie-i-ventilyaciya/raschet-vytyazhnyx-sistem-ventilyacii-po-staticheskomu-davleniyu/

В системах водяного отопления вода используется для передачи тепла от его генератора к потребителю.

Наиболее важными свойствами воды являются:

Удельная теплоемкость

Важным свойством любого теплоносителя является его теплоемкость. Если выразить ее через массу и разность температур теплоносителя, то получится удельная теплоемкость. Она обозначается буквой c и имеет размерность кДж/(кг • K) Удельная теплоемкость — это количество тепла, которое необходимо передать 1 кг вещества (например, воды), чтобы нагреть его на 1 °C. И наоборот, вещество отдает такое же количество энергии при охлаждении. Среднее значение удельной теплоемкости воды в диапазоне между 0 °C и 100 °C составляет:

c = 4,19 кДж/(кг • K) или c = 1,16 Втч/(кг • K)

Количество поглощаемого или выделяемого тепла Q. выраженное в Дж или кДж. зависит от массы m. выраженной в кг. удельной теплоемкости c и разности температур, выраженной в K .

Увеличение и уменьшение объема

Изменение объема воды

Все природные материалы расширяются при нагревании и сжимаются при охлаждении. Единственным исключением из этого правила является вода. Это уникальное ее свойство называется аномалией воды. Вода имеет наибольшую плотность при +4 °C, при которой 1 дм3 = 1 л имеет массу 1 кг.

Если вода нагревается или охлаждается относительно этой точки, ее объем увеличивается, что означает уменьшение плотности, т. е. вода становится легче. Это можно отчетливо наблюдать на примере резервуара с точкой перелива. В резервуаре находится ровно 1000 см3 воды с температурой +4 °C. При нагревании воды некоторое количество выльется из резервуара в мерную емкость. Если нагреть воду до 90 °C, в мерную емкость выльется ровно 35,95 см3, что соответствует 34,7 г. Вода также расширяется при ее охлаждении ниже +4 °C.

Благодаря этой аномалии воды у рек и озер зимой замерзает именно верхний слой. По той же причине лед плавает на поверхности и весеннее солнце может его растопить. Этого бы не происходило, если бы лед был тяжелее воды и опускался на дно.

Резервуар с точкой перелива

Однако, такое свойство расширяться может быть опасным. Например, автомобильные двигатели и водяные насосы могут лопнуть, если вода в них замерзнет. Во избежание этого в воду добавляются присадки, препятствующие ее замерзанию. В системах отопления часто используются гликоли; соотношение воды и гликоля см. в спецификации производителя.

Характеристики кипения воды

Если воду нагревать в открытой емкости, она закипит при температуре 100 °C. Если измерять температуру кипящей воды, окажется, что она остается равной 100 °C пока не испарится последняя капля. Таким образом, постоянное потребление тепла используется для полного испарения воды, т. е. изменения ее агрегатного состояния.

Эта энергия также называется латентной (скрытой) теплотой. Если подача тепла продолжается, температура образовавшегося пара снова начнет подниматься.

Изменение агрегатного состояния при повышении температуры

Описанный процесс приведен при давлении воздуха 101,3 кПа у поверхности воды. При любом другом давлении воздуха точка кипения воды сдвигается от 100 °C.

Если бы мы повторили описанный эксперимент на высоте 3000 м — например, на Цугшпитце, самой высокой вершине Германии — мы бы обнаружили, что вода там закипает уже при 90 °C. Причиной такого поведения является понижение атмосферного давления с высотой.

Температура кипения воды как функция давления

Чем ниже давление на поверхности воды, тем ниже будет температура кипения. И наоборот, температура кипения будет выше при повышении давления на поверхности воды. Это свойство используется, например, в скороварках.

График показывает зависимость температуры кипения воды от давления. Давление в системах отопления намеренно повышается. Это помогает предотвратить образование пузырьков газа в критических рабочих режимах, а также предотвращает попадание наружного воздуха в систему.

Расширение воды при нагревании и защита от избыточного давления

Системы водяного отопления работают при температурах воды до 90 °C. Обычно система заполняется водой при температуре 15 °C, которая затем расширяется при нагревании. Нельзя допустить, чтобы это увеличение объема привело к возникновению избыточного давления и переливу жидкости.

Система отопления со встроенным предохранительным клапаном

Когда отопление отключается в летний период, объем воды возвращается к первоначальному значению. Таким образом, для обеспечения беспрепятственного расширения воды необходимо установить достаточно большой бак.

Старые системы отопления имели открытые расширительные баки. Они всегда располагались выше самого высокого участка трубопровода. При повышении температуры в системе, что приводило к расширению воды, уровень в баке также повышался. При снижении температуры он, соответственно, понижался.

Современные системы отопления используют мембранные расширительные баки (МРБ). При повышении давления в системе нельзя допускать увеличения давления в трубопроводах и других элементах системы выше предельного значения.

Поэтому обязательным условием для каждой системы отопления является наличие предохранительного клапана.

При повышении давления сверх нормы предохранительный клапан должен открываться и стравливать лишний объем воды, который не может вместить расширительный бак. Тем не менее, в тщательно спроектированной и обслуживаемой системе такое критическое состояние никогда не должно возникать.

Компенсация изменения объема воды в системе отопления:

Все эти рассуждения не учитывают тот факт, что циркуляционный насос еще больше увеличивает давление в системе. Взаимосвязь между максимальной температурой воды, выбранным насосом, размером расширительного бака и давлением срабатывания предохранительного клапана должна быть установлена самым тщательным образом. Случайный выбор элементов системы — даже на основании их стоимости — в данном случае неприемлем.

Мембранный расширительный бак поставляется заполненным азотом. Начальное давление в расширительном мембранном баке должно быть отрегулировано в зависимости от системы отопления. Расширяющаяся вода из системы отопления поступает в бак и сжимает газовую камеру через диафрагму. Газы могут сжиматься, а жидкости — нет.

Источник: http://www.agrovodcom.ru/info_voda_transport.php

Смотрите также:

27 декабря 2023 года