Система обогрева включает, систему соединения, батареи, коллекторы котел, бак для расширения, крепежи, увеличивающие давление насосы терморегуляторы, трубы, развоздушки. На открытой странице web проекта мы попбробуем выбрать для коттеджа необходимые компоненты монтажа. Перечисленные узлы монтажа очень важны. Вот почему подбор перечисленных частей монтажа необходимо делать технически правильно. Сборка отопления квартиры насчитывает разные комплектующие.
Чтобы определить теплопотери помещения специалистами проводится расчет системы отопления. При этой работе опираться приходится на знания особенностей конструкции помещения.
Так, теплотехнический расчет системы отопления учитывает следующие характеристики: габариты помещения, толщину и тип наружных стен, остекление помещения, его теплоизоляцию, площадь оконных проемов и т.д. Теплотехнический расчет поможет наиболее оптимально использовать соответствующее оборудование.
Расчет системы центрального отопления поможет определиться с выбором нужного оборудования (котлы, радиаторы, горелки, насосы и т.п.), определить требуемые мощности и общую тепловую схему работы.
Расчет системы отопления проводится в несколько этапов.
На первом составляется проект отопительной схемы с учетом тепловых и гидравлических параметров. На предварительном этапе следует определиться, какой вид отопления требуется: напольное, радиаторное или комбинированное. Обычно предварительные расчеты занимают не так много времени, в среднем не более четырех дней. Здесь же обозначается требуемое оборудование и монтажный план. Оборудование должно органично вписываться в дизайн и общий интерьер дома. Кроме того, отопительная система обязана отвечать ряду требований - пожарной безопасности, санитарно-гигиеническим, нормативно-техническим регламентам, а также общей функциональности.
Далее подбирается оборудование по подходящим параметрам и стоимости. Это второй этап работ.
На третьем этапе происходит комплектация объекта всем уже приобретенным оборудованием. Затем происходит монтаж отопительной системы - монтаж узлов распределения, стояков и т.д.
Завершающим этапом становится монтаж и пуско-наладка отопительного котла.
Расчет системы отопления выполняется либо по методике СниПа либо по методике академика Панфилова. Расчет по СниПу учитывает тепловые потери здания и каждого его помещения.
Наша компания проводит полный расчет системы отопления. Работа начинается с подбора котла и труб и завершается монтажом радиатора отопления. В случае если подобный вид работ требуется в загородном доме, его следует проводить до этапа внутренней отделки помещений. По окончании монтажа проводятся пуско-наладочные работы.
Источник: http://www.thermostudio.ru/advisories_raschet
На досуге
Теплотехнический расчет систем отопления
Необходимость теплотехнического расчета систем отопления (а также других элементов и конструкций) возникает в случае проведения капитального ремонта и модернизации зданий.
Актуальность проведения таких работ на объектах повысилась последние годы в связи с большим износом зданий, построенных ещё в советские годы. Системы отопления, которыми здания оснащались еще десять лет назад, и оснащаются до сих пор, устроены таким образом, что не позволяют эффективно распределять объем тепла между этажами и отдельными элементами систем внутри здания.
Простыми словами, на некоторых участках системы отопления может отдаваться чрезмерно много тепла, а на других недостаточно. В итоге часть квартир получает переизбыток, который позволяет жильцам жить с открытыми форточками даже зимой. И наоборот — некоторые квартиры замерзают, потому что им приходит недостаточно тепла.
Устранить эти недостатки позволит теплотехническая и тепловизионная съемка конструкций зданий и сооружений http://www.disso.spb.ru/?item=9 .
На первом этапе производятся замеры — выполняется съемка и специалисты-инженеры получают примерно вот такую карту. Она показывает участки с разным тепловым режимом зданий по позволяет зафиксировать имеющиеся дефекты.
Следующий шаг проведение теплотехнического расчета, позволяющего решить вопрос с равномерными распределением тепла в доме. На каждом объекте эта задача решается по-разному. В ряде случаев необходимо утеплять дом — проводить обшивку с изоляцией. В других случаях необходима балансировка систем отопления, модернизация действующих инженерных систем от ИТП.
Теплотехническая съемка позволит выявить дефекты отопления и указать инженерам и проектировщикам, какие именно конструктивные элементы требуют перерасчета. В дальнейшем производится модернизация с использованием современных технологий и современного отопительного оборудования.
Просмотров: 787
Дата: Февраль 25th, 2014
Источник: http://saboy.ru/services/teplotehnicheskiy-raschet.html
При выборе радиаторов стоит учесть все факторы воздействия на них.
Поддержание комфортного температурно-влажностного режима в помещениях жилого или иного назначения в климатических условиях нашей страны невозможно без систем обогрева. Наибольшее распространение получили схемы с промежуточным теплоносителем, которые могут быть как централизованными, так и автономными.
Конечными устройствами в таких системах являются отопительные приборы, осуществляющие теплообменные процессы в помещениях.
Вопрос: как подобрать радиаторы отопления с учетом всех факторов – достаточно сложен и требует подробного рассмотрения.
Теплотехнический расчет
Системы отопления призваны компенсировать потери тепла через ограждающие строительные конструкции: наружные стены, полы, потолки. При проведении теплотехнического расчета учитываются следующие факторы:
- среднегодовая температура и влажность наружного воздуха в соответствии с климатической зоной;
- направления и сила ветров;
- толщина наружных строительных конструкций и коэффициент теплопроводности материала;
- наличие оконных и дверных проемов, характеристики остекления;
- наличие чердачных и подвальных помещений для первых и верхних этажей.
Правильно подобрать конечные теплотехнические приборы можно только при условии полного учета всех перечисленных параметров. При проведении расчетов лучше несколько завысить показатели, в противном случае недостаток тепловой мощности может привести к необходимости переделки всей системы в целом.
При расчете теплотехнических расчетов показатели лучше зависеть.
Выбрать потребные для данной схемы отопления приборы, в частности, радиаторы можно по результатам теплотехнического расчета. В соответствии со СНиП 41-01-2003 «Отопление и вентиляция» рекомендуемая удельная мощность для жилых помещений составляет от 100 Вт на 1 м.кв. общей площади при высоте перекрытия не более 3000 мм. Эта величина корректируется специальными коэффициентами.
Как лучше учесть все факторы для точного расчета необходимой мощности приборов отопления? Следует учесть, что наличие в комнате одного или двух окон увеличивает теплопотери на 20-30%.
Если же они находятся на северной или на ветреной стороне, то поправку можно смело увеличивать еще на 10%.
Важно! Радиаторы призваны компенсировать потери тепла и их параметры должны быть рассчитаны с некоторым запасом.
Классификация оборудования для систем обогрева
Стальные радиаторы наиболее распространение и у них доступная цена.
Для того чтобы правильно выбрать качественные приборы отопления необходимо получить представление в этом вопросе. Строительная индустрия предлагает большой выбор теплотехнического оборудования. Теплопередача от приборов в окружающую среду происходит за счет излучения и конвекции.
Существует несколько видов оборудования, применяемых в разных системах отопления. Как выбрать качественные радиаторы? Классификация оборудования производится по разным признакам и в том числе, по использованным в производстве материалам, по конструктивному исполнению, по способу монтажа и иным признакам.
Ответить на вопрос, какие приборы отопления лучше, помогут профессиональные продавцы консультанты из строительных супермаркетов. Наибольшее распространение получили стальные теплотехнические устройства, которые отличаются относительно невысокой стоимостью и приемлемыми прочностными характеристиками.
Они изготавливаются в соответствии с требованиями ГОСТ 19904-90 .
Хорошо зарекомендовали себя батареи из прессованного алюминиевого профиля или литые. Технология их производства определяется ГОСТ 8617-81. минимальная толщина стенки должна быть не менее полутора миллиметров. Это необходимо учитывать при подборе оборудования для обогрева помещений.
Технические требования к теплотехническим приборам
Как выбрать стальные или алюминиевые радиаторы наиболее подходящие для данных конкретных условий. Общие технические требования к приборам отопления устанавливаются ГОСТ 31311-2005. Этим документом устанавливаются основные понятия и их номинальные показатели. Максимальная температура теплоносителя для водяных приборов — 70°C при расходе не менее 60 кг в минуту и давлении в 1 атм.
При покупке радиатора важно изучить его техническую документацию.
Ответ на вопрос, какие выбрать устройства для систем обогрева, и в частности радиаторы, можно получить после внимательного изучения его технической документации. На предприятии изготовителе проводят паспортные испытания, результаты которых отражаются в информационных официальных изданиях завода изготовителя.
Рекомендации, какие лучше приборы для конкретных систем отопления могут дать сотрудники эксплуатационных предприятий. Наличие теплостойкого наружного покрытия не только имеет декоративное значение, но и защищает металлические детали от коррозии. Требования к качеству таких покрытий определяется в соответствии с нормативами органов санитарного надзора и должны отвечать требованиям ГОСТ 9.032-74 (класс не ниже IV).
Важно! Оборудование систем обогрева зданий не должно иметь острых углов и кромок, способных травмировать человека при неосторожном обращении. Особенно внимательно к этому вопросу следует подходить при выборе оборудования для школ, детских садов и больниц.
Методика подбора приборов для систем отопления
При выборе радиатора отопления следует учитывать сроки его эксплуатации.
Как выбрать для систем отопления наилучшие радиаторы? Консультацию на эту тему можно получить в специализированных компаниях, занимающихся проектированием инженерных сетей. Общие рекомендации: для автономных закрытых систем можно использовать в принципе любые батареи, но необходимо обеспечить качественную подготовку теплоносителя.
Какие стальные или алюминиевые радиаторы лучше подобрать для данного конкретного случая? В этом вопросе следует исходить из собственных финансовых возможностей и стоимости эксплуатации. Практика показывает, что энергоэффективность оборудования приблизительно одинакова для всех современных образцов. При выборе следует учитывать также и стилистку помещения, где они будут установлены.
Интересное по теме:
Почему биметаллические радиаторы лучшие?
Источник: http://utepleniedoma.com/otoplenie/radiatory-i-batarei/kak-podobrat-radiatory-otopleniya-osnovy-metodiki-rascheta
Как уже было упомянуто, при рассмотрении расчета потолочного отопления (см. гл. 34 и 35) при применении зависимостей двухмерной теплопроводности можно получить более точные результаты, чем при проведении вычислений на основе линейной теплопроводности. Точность вычислений не зависит от толщины бетонного слоя, поскольку среднюю температуру надо определять для плоскости оси змеевика (плоскости у = 0), а не для всего слоя бетона. В соответствии с этим системы отопления в наружных стеновых панелях всегда следует рассчитывать на основании принципа двухмерной теплопроводности, принимая во внимание, что данная конструкция легче и проще с теплотехнической точки зрения, чем потолок.
По сути дела, нет разницы между расчетом змеевика для наружной стеновой панели и для потолочного отопления, однако в отношении рассматриваемых здесь конструкций необходимо принимать во внимание следующие условия:
змеевики должны соединяться друг с другом, как радиаторы в однотрубной проточной системе отопления, т. е. с коэффициентом затекания а=1;
по соображениям технологии изготовления следует стремиться использовать как можно меньшее число типов панелей, поэтому панели промежуточных этажей должны быть одинаковыми, хотя с учетом теплоотдачи число витков змеевика в направлении верхнего этажа должно уменьшаться. По той же причине расположение труб змеевика в одинаковых по размерам панелях на первом и самом верхнем этажах должно быть также одинаковым.
На рис. 40.1 приведены сводные графики, в верхней части которых даны кривые поскольку на начальной стадии расчетов всегда задана средняя температура греющей поверхности В нижней части рисунка приведены удельные количества теплоты, qFi и qFe, которые поступают внутрь и наружу.
Из графиков видно, что диаметр трубы змеевика лишь в небольшой мере влияет на теплоотдачу, а качество теплоизоляции почти не сказывается на количестве теплоты, отдаваемой внутрь. Исходя из рис. 40.1 после вычисления можно приступить к первой стадии проектирования — вычислить полную длину змеевика, который должен быть смонтирован в панели помещения на среднем этаже, взятого за основу. Далее необходимо установить длину змеевика на подающей и обратной ветвях таким образом, чтобы были выполнены сформулированные выше условия. Для этого целесообразно построить кривые
в большем масштабе, поскольку на этой стадии вычислений наряду с расстоянием между витками важную роль играет температура стенки трубы Фи. На рис. 40.2 указаны количества теплоты, передаваемой отапливаемому помещению 1 м труб диаметрами /2 и 3Л дюйма при различных значениях и /. Согласно рисунку, кривые qi, cs в рассматриваемом интервале почти полностью могут быть заменены прямой, что значительно облегчает вычисления.
Вычисления начинают с расчета змеевика панели, расположенной в центре здания (например, на пятом этаже десяти- или одиннадцатиэтажного здания). Это необходимо потому, что теплопотребность уменьшается с каждым этажом из-за эффекта, создаваемого воздухообменом в лестничной клетке, соответственно с каждым этажом изменяется и значение w. При этом для этажей, расположенных выше, мы получим все уменьшающуюся среднюю температуру стенки трубы, а для этажей, расположенных ниже,— все возрастающую. Исключение составляет средняя температура воды в змеевиках первого этажа — она должна быть такой же, как температура на самом верхнем этаже. Изменяющуюся среднюю температуру змеевика можно определить путем соответствующего подбора длин змеевиков, присоединенных к подающей и обратной линиям.
Площадь поверхности А, которая должна быть охвачена змеевиком, нужно подобрать таким образом, чтобы в ее пределах помещались трубы вычисленной длины при стандартном расстоянии между трубами /. Поэтому естественно, что площадь поверхности А меньше, чем площадь свободной поверхности наружной стены. Следовательно, поверхность площадью А должна передавать и то количество теплоты, которое удаляется из помещения через неохваченную поверхность. Таким образом, теплота, передаваемая греющей поверхностью площадью А в помещение, равна
Эта длина трубы сохраняется для всех промежуточных этажей. Исходя из рис. 40.2, зная, можно построить кривую для выбранного расстояния между трубами (рис. 40.3). На этом же рисунке имеется кривая = Фш), построенная по средней температуре стенки трубы на остальных этажах (штрихпунктирная линия). Зная значение Qfr, которое следует по-этажно изменять, а также известную длину трубы L и расстояние между витками, по рис. 34.1 можно определить qiXs, а по рис. 40.2 — соответствующую температуру Поскольку, эту зависимость с очень хорошим приближением можно изобразить прямыми линиями. Значение Qfr с каждым этажом уменьшается пропорционально числу этажей, поэтому кривая также может быть заменена прямой линией.
Поэтажную среднюю температуру представим на уровне трети высоты этажа, поскольку основная часть змеевиков расположена в стене под окном.
Для самого верхнего и самого нижнего этажей примем ту температуру, которая получается при пересечении линии с уровнем пола верхнего этажа (на рисунке эта температура равна 52,6°С). Это значение будем считать действительным и для первого этажа. Далее примем во внимание, что на самом верхнем этаже следует обособленно смонтировать трубу длиной 3—3,5 м, соединяющую подающую и обратную магистрали. Ее теплоотдачу
Количество циркулирующей (без учета бесполезных теплопотерь панелей) воды т выражается зависимостью
Затем можно вычертить для этих двух уровней линию падения температуры как в подающей, так и в обратной ветви (см. на рис. 40.3 линию температуры на подающей и обратной ветвях на одиннадцатом и первом этажах). Определение теплоотдачи змеевиков проводится после выявления двух значений, относящихся к трети высоты линий на графике
После того, как получены одинаковая средняя температура стенки трубы на первом и самом верхнем этажах и одинаковые снижения температуры ДХ=Д,0 и тем самым одинаковая теплоотдача
Общую длину змеевиков вычислили на основании теплопотерь на промежуточном этаже (на рис. 40.3 — на пятом) и температуры
Источник: http://engineeringsystems.ru/luchistoye-otopleniye/teplotehnicheskiy-raschet.php